Richard Savery

Richard Savery

Georgia Tech Center For Music Technology

Richard's lectures

lecture cover

Richard Savery · ICCC'20

Shimon the Rapper: A Real-Time System for Human-Robot Interactive Rap Battles

"We present a system for real-time lyrical improvisation between a human and a robot in the style of hip hop. Our system takes vocal input from a human rapper, analyzes the semantic meaning, and generates a response that is rapped back by a robot over a musical groove. Previous work with real-time interactive music systems has largely focused on instrumental output, and vocal interactions with robots have been explored, but not in a musical context. Our generative system includes custom methods for censorship, voice, rhythm, rhyming and a novel deep learning pipeline based on phoneme embeddings. The rap performances are accompanied by synchronized robotic gestures and mouth movements. Key technical challenges that were overcome in the system are developing rhymes, performing with low-latency and dataset censorship. We evaluated several aspects of the system through a survey of videos and sample text output. Analysis of comments showed that the overall perception of the system was positive. The model trained on our hip hop dataset was rated significantly higher than our metal dataset in coherence, rhyme quality, and enjoyment. Participants preferred outputs generated by a given input phrase over outputs generated from unknown keywords, indicating that the system successfully relates its output to its input. "

lecture cover

Richard Savery · RO-MAN 2020

A Survey of Robotics and Emotion: Classifications and Models of Emotional Interaction

As emotion plays a growing role in robotic research it is crucial to develop methods to analyze and compare among the wide range of approaches. To this end we present a survey of 1427 IEEE and ACM publications that include robotics and emotion. This includes broad categorizations of trends in emotion input analysis, robot emotional expression, studies of emotional interaction and models for internal processing. We then focus on 232 papers that present internal processing of emotion, such as using a human’s emotion for better interaction or turning environmental stimuli into an emotional drive for robotic path planning. We conducted constant comparison analysis of the 232 papers and arrived at three broad categorization metrics - emotional intelligence, emotional model and implementation - each including two or three subcategories. The subcategories address the algorithm used, emotional mapping, history, the emotional model, emotional categories, the role of emotion, the purpose of emotion and the platform. Our results show a diverse field of study, largely divided by the role of emotion in the system, either for improved interaction, or improved robotic performance. We also present multiple future opportunities for research and describe intrinsic challenges common in all publications.

lecture cover

Multiple speakers · ICCC'20

Music and Poetry 1